GOsSHAWKDB:
PROGRAMMING WITH
PERSISTENT DISTRIBUTED OBJECTS

Matthew Sackman
matthew@goshawkdb.io

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

* MySQL/MariaDB?

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

* MySQL/MariaDB? (Spider / Galera)

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

* MySQL/MariaDB? (Spider / Galera)
* PostgreSQL?

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

* MySQL/MariaDB? (Spider / Galera)
* PostgreSQL?
* MongoDB?

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

* MySQL/MariaDB? (Spider / Galera)
* PostgreSQL?
* MongoDB?

» Cassandra?

Part 1;: Database Features and Semantics

DESIRED FEATURES

* Distributed

DESIRED FEATURES

* Distributed
* Fault-tolerant

DESIRED FEATURES

* Distributed
* Fault-tolerant
* Automatic sharding

DESIRED FEATURES

Distributed
Fault-tolerant
Automatic sharding
Transactional?

DESIRED FEATURES

Distributed
Fault-tolerant
Automatic sharding
Transactional?
Intuitive

Distributed
Fault-tolerant
Automatic sharding
Transactional?
Intuitive

Fast enough

DESIRED FEATURES

Distributed:

Fault-tolerant:

Automatic sharding:

Transactional:

Intuitive:

MARIADB

MARIADB

Distributed: Yes. Primary/Secondaries design; full multi-master
with Galera (InnoDB only).

Fault-tolerant:

Automatic sharding:

Transactional:

Intuitive:

MARIADB

Distributed:

Fault-tolerant: Yes. Galera must be CP; continues working
provided a majority of nodes remain connected. Resyncing
will happen: expensive.

Automatic sharding:

Transactional:

Intuitive:

MARIADB

Distributed:

Fault-tolerant:

Automatic sharding: Ish. Galera is everyone-has-everything
(no sharding). Spider storage engine does do sharding. Spider
can be used with Galera.

Transactional:

Intuitive:

MARIADB

Distributed:

Fault-tolerant:

Automatic sharding:

Transactional: Yes, but with Galera, weak isolation levels only:
max repeatable read.

Intuitive:

Distributed:

Fault-tolerant:

Automatic sharding:

Transactional:

Intuitive: Erm. It’s a bit complex!

MARIADB

MARIADB: GALERA LLIMITATIONS

@ https://mariadb.com/kb/en/mariadb/mariadb-galera-cluster-knowr

ES NI [e] SUPPORT RESOURCES KNOWLEDGEBASE BLOG MYPORTAL LOGIN/S

PRODUCTS SERVICES SOLUTIONS CUSTO]

MariaDB Galera Cluster - Known Limitations

Lome This article contains information on known problems and limitations of MariaDB Galera Cluster.

Limitations from codership.com:

Open Questions

MariaDB « Currently replication works only with the InnoDB storage engine. Any writes to tables of other types, including system
(mysql*) tables are not replicated (this limitation excludes DDL statements such as CREATE USER, which implicitly modify
MariaDB Enterprise the mysgl * tables — those are replicated). There is however experimental support for MylSAM - see the

p_replicate_myisam system variable)

Unsupported explicit locking include LOCK TABLES, FLUSH TABLES {explicit table list} WITH READ LOCK, (GET_LOCK()
RELEASE_LOCK()....). Using transactions properly should be able to overcome these limitations. Global locking operators
like FLUSH TABLES WITH READ LOCK are supported

MariaDB MaxScale

All Topics
« Alltables should have a primary key (multi-column primary keys are supported). DELETE operations are unsupported on
tables withouit a primary key. Also, rows in tables without a primary key may appear in a different order on different nodes.
History + The query log cannot be directed to a table. If you enable query logging, you must forward the log to a file: log_output=FILE
Source « XA transactions are not supported.

Transaction size. While Galera does not explicitly limit the transaction size, a writeset is processed as a single memory-
Flag as Spam / resident buffer and as a result, extremely large transactions (e.g. LOAD DATA) may adversely affect node performance. To
Inappropriate avoid that, the wsrep_max_ws_rows and wsrep_max_ws_size system variables limit transaction rows to 128K and the
transaction size to 1Gb by default. If necessary, users may want to increase those limits. Future versions will add support for
transaction fragmentation.

Translate

MARIADB: GALERA LLIMITATIONS

& https//mariadb.com/kb/en/mariadb/mariadb-galera-cluster-kn

ESNIM[s] SUPPORT RESOURCES KNOWLEDGEBASE BLOG MY PORTAL LOGIN/S

PRODUCTS SERVICES SOLUTIONS CUSTOQ|

Other observations, in no particular order:
Created
4years, 1 month ago
Modified
1year, 10 months ago

If you are using mysgidump for state transfer, and it failed for whatever reason (e.g. you do not have the database account it
aitempts to connect with, or it does not have necessary permissions), you will see an SQL SYNTAX error in the server erfor
log. Don't et it fool you, this is just a fancy way to deliver a message (the pseudo-statement inside of the bogus SQL wil
actually contain the error message)

+ Do not use transactions of any essential size. Just ta insert 100K rows, the server might require additional 200-300 Mb. In a
less fortunate scenario it can be 1.5 Gb for S00K rows, or 3.5 Gb for 1M rows. See MDEV-466 for some numbers (you'll see

ErEL that it's closed, but its not closed because it was fixed).

Locking is lax when DDL is involved. For example, if your DML transaction uses a table, and a parallel DDL statement is

[History started, in the normal MySQL setup it would have waited for the metadata lock, but in Galera context it will be executed right

) Comments away. It happens even if you are running a single node, as lang as you configured it as a cluster node. See also MDEV-468
This behavior might cause various side-effects, the consequences have not been investigated yet. Try to avoid such
parallelism

Links
+ hitpaiicodership.blogspot.cor
{s-with- produce unique non-conflicting sequences, so on every single node the sequence will have gaps. See

Do not rely on auto-increment values to be sequential. Galera uses a mechanism based on autoincrement increment to

auto-incren
mult.html hitp://codership_blogspot. com/2009/02/managing-auto-increments-with-multi.htm
+ log_output=FILE

/A command may fail with ER_UNKNOWN_COM_ERROR producing "WSREP has not yet prepared node for application use’ (or
“Unknown command in older versions) error message. It happens when a cluster is suspected to be split and the node
a smaller part — for example, during a network glitch, when nodes temporarily lose each other. It can also occur during
state transfer. The node takes this measure (o prevent data inconsistency. Its usually a temparary state which can be
detected by checking wsrep_ready value. The node, however, allows SHOW and SET command during this period.

« MylSAM
« CRE

HLUSH IABLES WITH
READ LOCK
GET_LOCK()
RELEASE_LOCK()
mysqidump

InnoDB storage engine
query log

ertor log

- query cache

ry Log Formats

« binlog_format
wsrep_ready
wsrep_max_ws._size
XA transactions
MDEV-421

MDEV-466

MDEV-468
MDEV-6229

« MDEV-6860

Attachments Edit

No attachments exist

Localized Versions
+ MariaDB Galera Cluster
- Limitazioni note [i]

Ga

MARIADB: GALERA LLIMITATIONS

Alter a temporary spit, if the 'good part of the cluster was still reachable and its state was modified, resynchronization
ocours. As a part of it, nodes of the ‘bad" part of the cluster drop all cient connections. It might be quite unexpected,
especially if the client was idle and did not even know anything wrong was happening. Please also note that after the
connection to the isolated node is restored, if there is a flow on the node, it takes a long time for it to synchronize, during
which the "good” node says that the cluster s already of the normal size and synced, while the rejoining node says it's only
joined (but not synced). The connections keep getting ‘unknown command’. It should pass eventually

While binlog_format is checked on startup and can only be ROW (see Binary Log Formats), it can be changed at runtime.
Do NOT change binlog_format at runtime, it is likely not only cause replication failure, but make all other nodes crash.

If you are using rsync for state transfer, and a node crashes before the state transfer is over, rsync process might hang
forever, occupying the port and not allowing to restart the node. The problem will show up as port in use' in the server error
log. Find the orphan rsync process and Kill it manually.

Performance: by design performance of the cluster cannot be higher than performance of the slowest node; however, even
if you have only one node, its performance can be considerably lower comparing to running the same server in a standalone
mode (without wsrep provider). It is particularly true for big enough transactions (even thase which are well within current
limitations on transaction size quoted above).

Windows is not supported,

Replication filters: Within Galera cluster, replication filters should be used with caution. As a general rule except for InnoDB.
DML updates, the following replication filters are not honored in a Galera cluster - binlog-do-db , binlog-ignore-db
replicate-wild-do-db, replicate-wild-ignore-db . However, replicate-do-db . replicate-ignore-db filters

are honored for DDL and DML for both InnoDB & MyISAM engines. Having said that, caution must be taken while using
replication filters as they might create discrepancies and replication may abort (see MDEV-421, MDEV-6229).

FLUSH PRIVILEGES is not replicated

Prior o MariaDB Galera Cluster versions 5.5.40-galera and 10.0.14-galera, the query cache needed to be disabled.

In an asynchronous replication setup where a master replicates o a galera node acting as slave, parallel replication (slave-
paraliel-threads > 1) on slave is currently not supported (see MDEV-6860).

- Getting Started with MariaDB Galera Cluster 1 MariaDB Galera Cluster 1 Galera Cluster Status Variables —

MARIADB: UNSAFE STATEMENTS

& https//mariadb.com/kb/en/rm

NI™=[¢] SUPPORT RESOURCES KNOWLEDGEBASE BLOG MY PORTAL LOGIN/S

PRODUCTS SERVICES SOLUTIONS CUSTO|

Home » Resources » Know

DB Documentation » M

 MariaDB » Re

Unsafe Statements for Replication

Home

aster » Standard Repli

on » Unsafe Statements fo

A'safe' statement is one that can be replicated correctly in th
based binary log format Contents
Open Questions

statement-

1. Unsafe statements
A safe statement is generally deterministic; in other words the statementwill 5 Sate siaements
always produce the same result. For example, an INSERT statement 3. Isolation levels
MariaDB producing a random number will most likely produce a different resulton the 4. See also

master than on the slave, and so cannot be replicated safely.
MariaDB Enterprise

When an unsafe statement s run, the current binary logging format determines how the server responds

MaxScale « If the binary logging format s statement-based (the defaul), unsafe statements generate a warning and are logged
normally.

ATopes « If the binary lagging format is row-based, all statements are logged normally, and the distinction between safe and unsafe is
not made.
« If the binary lagging format is mixed. unsafe statements are logged using the row-based format, while safe statements use
the statement-based format.
History) . -
MariaDB tries to detect unsafe statements. When an unsafe statement is issued, a warning similar to the following is produced:
Source
Note (Code 1592): Unsafe statement written to the binary log using statement format since
Flag as Spam/ BINLOG_FORMAT = STATEMENT. The statement is unsafe because it uses a LIMIT clause
Inappropriate

This
is unsafe because the set of rows included cannot be predicted.

MARIADB: UNSAFE STATEMENTS

& https://mariadb.com/kb/en/mariadb/unsafe-statel

or-replication

ES NI™[¢] SUPPORT RESOURCES KNOWLEDGE BASE BLOG MY PORTAL LOGIN/S

PRODUCTS SERVICES SOLUTIONS CUSTO]

Unsafe statements

Created
2 years, 6 months ago
Modified The following statements are regarded as unsafe
6 montns, 2 weeks ago
Type « INSERT ... GN DUPLICATE KEY UPDATE statements upon tables with multiple primary or unique keys, as the order that
artice the keys are checked in, and which affect the rows chosen to update, is not deterministic. Before MariaDB 5.5.24, these
Status statements were not regarded as unsafe. In MariaDB 10.0 this waming has been removed as we always check keys in the
active same order on master and slave
License + INSERT-DELAYED. These statements are inserted in an indeterminate order.
CCBY-SA/Gnu FDL + INSERT's on tables with a composite primary key that has an AUTO_INCREMENT column that isn't the first column of the
composite key.
[History + UPDATE's on a table a table having an AUTO_INCREMENT column when run by a trigger or stored program. Before

MariaDB 5.5.3, all updates on tables with an AUTO_INCREMENT column were considered unsafe, as the order that the
fows were updated could differ across servers.

UPDATE's using LIMIT, since the order of the retumed rows is unspecified. This applies even to statements using an
ORDER BY clause, which are deterministic (a known bug). However, since MariaDB 10.0.11, LIMIT 8 is an exception to
this rule (see MDEV-6170), and these statements are safe for replication

When using a user-defined function.

Statements using using any of the following functions, which can retur different results on the slave: FOUND_ROWS()
GET_LOCK(), IS_FREE_LOCK(), IS_USED_LOCK(), LOAD_FILE(), MASTER_POS_WAIT(), RAND(,, RELEASE_LOCK()
ROW_COUNT(), SESSION_USER(), SLEEP(), SYSDATE(), SYSTEM_USER(), USER(), UUID(), and UUID_SHORT()
Statements which refer to log tables, since these may differ acrass servers.

Statements which refer to seff-logging tables. Statements following a read or wiite o a self-logging table within a transaction
are also considered unsafe

Statements which refer to system variables (there are a few exceplions)

LOAD DATA INFILE statements (since MariaDB 5.5.6).

Non-transactional reads or writes that execute after transactional reads within a transaction.

0

« UNIX_TIMESTAN

« UTC_DATE()
- UTE TIMEN

MARIADB: UNSAFE STATEMENTS

& https//mariadb.com/kb/en/mariadb/unsafe-s

~replicatior

ES NI [s] SUPPORT RESOURCES KNOWLEDGEBASE BLOG MY PORTAL LOGIN/S

PRODUCTS SERVICES SOLUTIONS CUSTO|

« SYSTEM_USER() : it

RO

+ CURRENT_DATE()
+ CURRENT_TIM
+ CURRENT_TIMESTAMP()

. + CURTIME()
. + LAST INSERT_ID[)
o + LOCALTIME(

ALTIMESTAMP()

Isolation levels

Even when using safe statements, not all transaction isolation levels are safe with statement-based or mixed binary logging. The
REPEATABLE READ and SERIALIZABLE isolation levels can only be used with the row-based format.

This restriction does not apply if only non-ransactional storage engines are used.

- CP

STUFF THAT WE NEED TO FIGURE OuT

STUFF THAT WE NEED TO FIGURE OuT

« CP
* Isolation levels (repeatable read)

STUFF THAT WE NEED TO FIGURE OuT

« CP
* Isolation levels (repeatable read)
* How do we decide if we're violating any of the restrictions?

Distributed:

Fault-tolerant:

Automatic sharding:

Transactional:

Intuitive:

MonxGoDB

MonxGoDB

Distributed: Yes. It is a primary/secondaries design so you
must connect to the primary to write (and to read!).

Fault-tolerant:
Automatic sharding:

Transactional:

Intuitive:

MonxGoDB

Distributed:

Fault-tolerant: Yes. It should survive node failure and recovery.
CP system: primary steps down once it loses contact with
majority of nodes.

Automatic sharding:

Transactional:

Intuitive:

MonxGoDB

Distributed:

Fault-tolerant:

Automatic sharding: Yes, with several strategies available.
Sharding done at collection level.

Transactional:

Intuitive:

Distributed:

Fault-tolerant:

Automatic sharding:

Transactional: No

Intuitive:

MonxGoDB

MonxGoDB

Distributed:

Fault-tolerant:

Automatic sharding:

Transactional:

Intuitive: There are some operation issues and restrictions with
sharded collections - certain things that no longer work. Also
you need to learn write concerns and read concerns: probably
want to set those to majority to avoid stale reads.

MONGODB: SHARDED COLLECTION RESTRICTIONS

@ https//docs.mongodb.com/manual/rel

COMPANY

mongoDB

Was this page helpfulz ~ Yes No.

IANUAL 3.2 (current)~
Sharded clusters have the restrictions and thresholds described here
Sharding Operational Restrictions
Shell Operations Unavailable in Sharded Environments
SRUD Operations The group does not work with sharding. Use mapReduce or aggregate instead
Deprecated since version 3.0: db.eval() is deprecated

db.eval() is incompatible with sharded collections. You may use db.eval() with un-sharded
collections in a shard cluster.

$where does not permit references to the db object from the $where function. This is uncommon in un-
sharded collections.

The $isolated update modifier does not work in sharded envirenments.
$snapshot queries do not work in sharded environments.

The geoSearch command is not supported in sharded environments.

MONGODB: SHARDED COLLECTION RESTRICTIONS

& https:/

Was this page helpful? ~ Yes No
IANUAL 3.2 (current)~ Covered Queries in Sharded Clusters

An index cannat Gover a query on a sharded collection when run against a mongos if the index does not
contain the shard key, with the following exception for the _id index: If a query on a sharded collection only
specifies a condition on the _id field and returns only the _id field, the _id index can cover the query
when run against a mongos even if the _id field is not the shard key.

Shell
Changed in version 3.0: In previous versions, an index cannot cover a query on a sharded collection when
run against a mongos.

JRUD Ogperations N €

Sharding Existing Collection Data Size

An existing collection can only be sharded if its size does not exceed specific limits. These limits can be
estimated based on the average size of all shard key values, and the configured chunk size.

These limits only apply for the initial sharding operation. Sharded collections can grow to any size after
successfully enabling sharding.

Use the following formulas to calculate the theoretical maximum collection size.

MONGODB: SHARDED COLLECTION RESTRICTIONS

& https://docs.mongodb.com/manual limits/#shar

COMPANY

OURCE

un

mongoDB. | DOCUMENTATION

Was this page helpful? ~ Yes No

IANUAL 3.2 (current) -
() Use the following formulas to calculate the theoretical maximum collection size.

maxSplits = 16777216 (bytes) / <average size of shard key values in bytes>
maxCollectionSize (MB) = maxSplits * (chunkSize / 2)

Shell

SRUD Operations The maximum BSON document size is 16MB or 16777216 bytes

\ All conversions should use base-2 scale, e.g. 1024 kilobytes = 1 megabyte.

IfmaxCollectionSize is less than or nearly equal fo the target collection, increase the chunk size to

L, ensure sucessful initial sharding. If there is doubt as to whether the resuit of the calculation is too ‘close’ to
the target collection size, it is likely better to increase the chunk size.

= After successful initial sharding, you can reduce the chunk size as needed. If you later reduce the chunk
size, it may take time for all chunks to split to the new size. See Modify Chunk Size in a Sharded Cluster for
instructions on modifying chunk size.

This table illustrates the approximate maximum collection sizes using the formulas described above:

MONGODB: SHARDED COLLECTION RESTRICTIONS

& https:/

Was this page helpful? ~ Yes No

IANUAL -
SREnE After successful initial sharding, you can reduce the chunk size as needed. If you later reduce the chunk

size, it may take time for all chunks to split to the new size. See Modify Chunk Size in a Sharded Cluster for
instructions on modifying chunk size.

This table illustrates the approximate maximum collection sizes using the formulas described above:

Shell Average Size of

Shard Key Values 512 bytes 256 bytes 128 bytes 64 bytes
>RUD Ogperations

Maximum Number of

32,768 65,536 131,072 262,144
Splits

1
Max Collection Size - . a8
(84 MB Ghunk Size)
Max Collection Size e . .

| (128 MB Chunk

B Size)

= Max Collection Size a8 - w78
(256 MB Chunk

Size)

MONGODB: SHARDED COLLECTION RESTRICTIONS

@ https://docs.mongedb.com/manua

limi

COMPANY OPEN SOURCE

mongoDB. | D NTATION

Was this page helpful? ~ Yes No

IANUAL 3.2 (current)~ Single Document Modification Operations in Sharded Collections

All update () and remove () operations for a sharded collection must include the shard key or the _id
field in the query specification. update () and remove () operations without the shard key or the _id
field return an error.

Shell Unique Indexes in Sharded Collections

SRUD Operations MongoDB does not support unique indexes across shards, except when the unique index contains the full
shard key as a prefix of the index. In these situations MongoDB will enforce uniqueness across the full key,
not a single field

SEE:

Unique Constraints on Arbitrary Fields for an altemate approach.

o Maximum Number of Documents Per Chunk to Migrate
MongoDB cannot move a chunk if the number of documents in the chunk exceeds either 250000
documents or 1.3 times the result of dividing the configured chunk size by the average document size.
db.collection.stats() includes the avgObjSize field, which represents the average document
size in the collection.

MONGODB: SHARDED COLLECTION RESTRICTIONS

@ https//docs.mongodb.com/manual/refer:

limits/#shar

-clusters

COMPANY UNIVES

mongoDB D 3 ON SERVER DRIVERS

Was this page helpful? ~ Yes No

IANUAL 3.2 (current)~ Maximum Number of Documents Per Chunk to Migrate

MongoDB cannot move a chunk if the number of documents in the chunk exceeds either 250000
documents or 1.3 times the result of dividing the configured chunk size by the average document size.
db.collection.stats() includes the avgObjSize field, which represents the average document
size in the collection.

Shell
SRUD Operations Shard Key Limitations
shard Key size
A shard key cannot exceed 512 bytes.
s Shard Key Index Type
- A shard key index can be an ascending index on the shard key, a compound index that start with the shard

key and specify ascending order for the shard key, or a hashed index.

A shard key index cannot be an index that specifies a multikey index, a text index or a geospatial index on
the shard key fields.

MONGODB: SHARDED COLLECTION RESTRICTIONS

& htps//docs.mongedb.com/manual/reference/limits/#sharded-clusters

COMPANY

SOURCE

un

mongoDB. | SERVER DRIVERS [

Was this page helpful? ~ Yes Mo

IANUAL 32 (current)~ Shard Key Limitations

Shard Key Size
A shard key cannot exceed 512 bytes.
Shell shard key Index Type

SRUD Operations A shard key index can be an ascending index on the shard key, a compound index that start with the shard
key and specify ascending order for the shard key, or a hashed index.

A shard key index cannat be an index that specifies a multikey index, a text index or a geospatial index on
the shard key fields.

s shard Key is Immutable

- If you must change a shard key:

Dump all data from MongoDB into an extemal format

Drop the original sharded collection.

Configure sharding using the new shard key.

Pre-split the shard key range to ensure initial even distribution.

Restore the dumped data into MongoDB.

MONGODB: SHARDED COLLECTION RESTRICTIONS

& https://docsmongedb.com/manual/reference/limits/#sharded-clusters

COMPANY

mongoDB. | DOCUMENTATION

Was this page helpful? ~ Yes Mo
IANUAL 3.2 (current)~ shard Key is Immutable

If you must change a shard key:

Dump all data from MongoDB into an extemal format

Drop the original sharded collection.

Shell

Configure sharding using the new shard key.

Pre-split the shard key range to ensure initial even distribution.

>RUD Operations

Restore the dumped data into MongoDB.

Shard Key Value in a Document is Immutable
Once you shard a collection, the shard key and the shard key values are immutable; i.e

3 * You cannot select a different shard key for that collection.

* You cannot update the values of the shard key fields.

MONGODB: SHARDED COLLECTION RESTRICTIONS

& https//docs.mongodb.com/manual/reference/limits/#sharded-clu

COMPANY OPEN SOURCE

mongoDB. | DOCUMENTATION SERVER

Was this page helpful? ~ Yes No

IANUAL 3.2 (current) - Monetonically Increasing Shard Keys Can Limit Insert Throughput

For clusters with high insert volumes, a shard keys with increasing and keys can
affect insert throughput. i your shard key is the _1d field, be aware that the default values of the _1id fields
are Objectlds which have generally increasing values.

Shell When inserting documents with mor shard keys, all inserts belong to the same chunk
on a single shard. The system eventually dwwdes the chunk range that receives all write operations and

3RUD Operations migrates its contents to distribute data more evenly. However, at any moment the cluster directs insert

p

operations only to a single shard, which creates an insert throughput bottleneck.

If the operations on the cluster are predominately read operations and updates, this limitation may not affect
the cluster.

To avoid this constraint, use a hashed shard key or select a field that does not increase or decrease
monotonically.

on Changed in version 2.4 Hashed shard keys and hashed indexes store hashes of keys with ascending

values.

STUFF THAT WE NEED TO FIGURE OuT

« CP
* Isolation levels (repeatable read)
* How do we decide if we're violating any of the restrictions?

STUFF THAT WE NEED TO FIGURE OuT

CP

Isolation levels (repeatable read)

How do we decide if we're violating any of the restrictions?
Write-concern, Read-concern, read-preference

Distributed:
Fault-tolerant:

Automatic sharding:

Transactional:

Intuitive:

CASSANDRA

Distributed: Yes. Logically available from any node.
Fault-tolerant:

Automatic sharding:
Transactional:

Intuitive:

CASSANDRA

CASSANDRA

Distributed:

Fault-tolerant: Yes. Replication factor which is the 2F+1 value.
Hinted Handoff to store write hints if the write concern is lower
than the replication factor. It's LWW with L defined by some
timestamp...

Automatic sharding:
Transactional:

Intuitive:

CASSANDRA

Distributed:
Fault-tolerant:

Automatic sharding: Yes. Based on consistent-hash ring.
Transactional:

Intuitive:

CASSANDRA

Distributed:
Fault-tolerant:

Automatic sharding:

Transactional: No. Supports light weight transactions which
only work on single objects. Question marks about current
implementation.

Intuitive:

CASSANDRA

Distributed:
Fault-tolerant:

Automatic sharding:
Transactional:

Intuitive: AP with write consistency level ANY and RF=|nodes|
and read=ONE. CP with light weight transactions and use of
serial consistency, which achieves linearizable isolation, which
is consistent with serial of LWW. Internally uses Paxos, but has
to start at phase 1. Docs suggest 4 round trips...which seems
like 2 too many. Many things between AP and CP are possible
too.

STUFF THAT WE NEED TO FIGURE OuT

CcpP

Isolation levels (repeatable read)

How do we decide if we're violating any of the restrictions?
Write-concern, Read-concern, read-preference

STUFF THAT WE NEED TO FIGURE OuT

CP and AP: CAP “theorem”

Isolation levels (repeatable read)

How do we decide if we're violating any of the restrictions?
Write-concern, Read-concern, read-preference

Lww

Timestamps and Clocks

Consistent-hash

Paxos

ISOLATION LEVELS

Strong-serializable

N

Linearizable Serializable
/ PN
Sequential Repeated Read Snapshot Isolation
/ /
Causal \MAV
\ y
PRANI/ \WFR Read Committed P-Ci

SN

RYW MR

SNAPSHOT ISOLATION

AS PER WIKIPEDIA

“Snapshot isolation is a guarantee that all reads made in a transaction
will see a consistent snapshot of the database and the transaction
itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot.”

SNAPSHOT ISOLATION

AS PER WIKIPEDIA

“Snapshot isolation is a guarantee that all reads made in a transaction
will see a consistent snapshot of the database and the transaction
itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot.”

Snapshot isolation is called “serializable” mode in Oracle.

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0{
y = 1 X = 1
} }

} +

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

t1then t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

t1then t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

t1then t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

t1then t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thent1

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

* Snapshot Isolation:

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

* Snapshot Isolation:
t1]]t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

* Snapshot Isolation:
t1]]t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

* Snapshot Isolation:
t1]]t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1

t2thentl: x:1, y:0
* Snapshot Isolation:

t1]]t2: x:1, y:1

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

* Snapshot Isolation: Write Skew
t1]]t2: x:1, y:1

SERIALIZED VERSUS STRONG SERIALIZED

Strong Serialized must obey causality. Serialized does not need to.

x =0

func t10)
if x ==
x =1
}
}
func t2Q)
if x ==

SERIALIZED

x =0

func t10)
if x ==
x =1
}
}
func t2Q)
if x ==

SERIALIZED

* Clientruns: t1; t2;

SERIALIZED

x := 0 * Clientruns: t1; t2;
func t10) { * Server is allowed to
if x == 0 { reorder though:

x =1 tl; t2; or
} t2; til;
b
func t20 {
if x == 1 {
x =2
3

SNAPSHOT ISOLATION

AS PER WIKIPEDIA

“Snapshot isolation is a guarantee that all reads made in a transaction
will see a consistent snapshot of the database and the transaction
itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot.”

SNAPSHOT ISOLATION

AS PER WIKIPEDIA

“Snapshot isolation is a guarantee that all reads made in a transaction
will see a consistent snapshot of the database and the transaction
itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot.”

As with serializable, no restriction on when in the history of the
database each snapshot is taken, so again can violate causality.

ISOLATION LEVELS

Strong-serializable

N

Linearizable Serializable
/ \
Seque{ial Repeated Read Snapshot Isolation
7
Causal \MAV
\ /
PRAM/ \WFR Read Committed P-Cl

SN

RYW MR

ISOLATION LEVELS

CP-system Strong-serializable
Linearizable Serializable
Sequential Repeated Read Snapshot Isolation
(A?;;ys;erlz\ Causal . G 7 MAV
with sticky
sessions) /\\ \\/
PRAM .-~ WFR Read Committed P-Cl

/I\

RYW /MR AP-system

Distributed:
Fault-tolerant:

Automatic sharding:

Transactional:
Intuitive:

GosHAwkDB

GosHAwkDB

Distributed: Yes. Logically available from any node.

Fault-tolerant:

Automatic sharding:
Transactional:
Intuitive:

GosHAwkDB

Distributed:

Fault-tolerant: Yes. You specify the number of failures you wish
to withstand: F.

Automatic sharding:
Transactional:

Intuitive:

GosHAwkDB

Distributed:
Fault-tolerant:

Automatic sharding: Yes. Completely transparent.
Transactional:
Intuitive:

Distributed:
Fault-tolerant:

Automatic sharding:

Transactional: Yes. Strong serializable only.

Intuitive:

GosHAwkDB

GosHAwkDB

Distributed:
Fault-tolerant:

Automatic sharding:
Transactional:
Intuitive: Hopefully! Small API, small featureset, clear docs.

PART 1: CONCLUSIONS

* Understanding databases is hard: lots of terminology

PART 1: CONCLUSIONS

» Understanding databases is hard: lots of terminology
+ Comparing them is harder

PART 1: CONCLUSIONS

» Understanding databases is hard: lots of terminology
+ Comparing them is harder

* Very common that your requirements grow over time

PART 1: CONCLUSIONS

Understanding databases is hard: lots of terminology
Comparing them is harder
Very common that your requirements grow over time

Hedge your bets: go with something that offers strong
guarantees and simple intuitive semantics...

PART 1: CONCLUSIONS

Understanding databases is hard: lots of terminology
Comparing them is harder

Very common that your requirements grow over time
Hedge your bets: go with something that offers strong
guarantees and simple intuitive semantics...

...assuming it's fast enough. The stronger the guarantees, the
more work that has to be done.

PART 1: CONCLUSIONS

Understanding databases is hard: lots of terminology
Comparing them is harder
Very common that your requirements grow over time

Hedge your bets: go with something that offers strong
guarantees and simple intuitive semantics...

...assuming it's fast enough. The stronger the guarantees, the
more work that has to be done.

At scale, problems stop being rare.

Part 2: APIs

GOsHAWKDB AND THE OBJECT GRAPH

GOsHAWKDB AND THE OBJECT GRAPH

GOsHAWKDB AND THE OBJECT GRAPH

GOsHAWKDB AND THE OBJECT GRAPH

GOsHAWKDB AND THE OBJECT GRAPH

GOsHAWKDB AND THE OBJECT GRAPH

GOsHAWKDB AND THE OBJECT GRAPH

GOsHAWKDB AND THE OBJECT GRAPH

GOsHAWKDB AND THE OBJECT GRAPH

You deal with objects in your programming language. Why not
make them persistent?

A PERFECT WORLD

Imagine infinite RAM and CPU, and no crashes.
How would we write programs and manage data?

A PERFECT WORLD

Imagine infinite RAM and CPU, and no crashes.
How would we write programs and manage data?
It depends.

OBJECT RELATIONAL MAPPINGS

+ Tend to do one table per class/type...

OBJECT RELATIONAL MAPPINGS

+ Tend to do one table per class/type...
* ...which can create unnecessary contention.

OBJECT RELATIONAL MAPPINGS

+ Tend to do one table per class/type...
* ...which can create unnecessary contention.
+ Always introduce tension as to who writes the SQL

OBJECT RELATIONAL MAPPINGS

Tend to do one table per class/type...

...which can create unnecessary contention.
Always introduce tension as to who writes the SQL
Often produce inefficient SQL

OBJECT RELATIONAL MAPPINGS

Tend to do one table per class/type...

...which can create unnecessary contention.

Always introduce tension as to who writes the SQL
Often produce inefficient SQL

Sometimes do weird and wacky things to your schema

OBJECT RELATIONAL MAPPINGS

Tend to do one table per class/type...

...which can create unnecessary contention.

Always introduce tension as to who writes the SQL
Often produce inefficient SQL

Sometimes do weird and wacky things to your schema

Introduce another layer of complexity; more code, more
dependencies

OBJECT GRAPH WITH MVCC

OBJECT GRAPH WITH MVCC

OBJECT GRAPH WITH MVCC

Obja0

Objb 2

Obj ¢ 2

Objd 2

Obje 2

MVCC EXAMPLE

MVCC EXAMPLE

Obja0
txn3 r[a0,b0lwIc]
Objb 2
Obj c 2
Objd 2

Obje 2

MVCC EXAMPLE

Obja 2
txn3 r[a0,b0lwlc]
Objb 2
o —FEEEEE
Objd 2
Obje 2

u]
&)
I

ul
it

MVCC EXAMPLE

Obja 2

txn3 r[a0,b0lw(c]
Objb 2

txn2 r[b0,c3]wld,e]
Objd 2
Obje 2

MVCC EXAMPLE

Obja 2

txn3 r[a0,b0lw(c]
Objb 2

txn2 r[b0,c3]wld,e]
Objd 2 2
Obje 2 2

MVCC EXAMPLE

Obja 2
txn3 r[a0,b0lw(c]
Objb 2
txn2 r[b0,c3]wld,e]
| txn7 r[b0,d0]wl[a,c] |
Objd 2 2
Obje 2 2

u]
&)
I
ul
it

MVCC EXAMPLE

Obja 2
Objb 2
txn2 r[b0,c3]wld,e]

Obj c 2
| txn7 r[b0,d0]wl[a,c] |
Objd 2 J///Z

Obje 2 2

u]
&)
I
ul
it

MVCC EXAMPLE

Obja 2
Objb 2
txn2 r[b0,c3]wld,e]

Objd %4 2

Obje 2 2

u]
&)
I
ul
it

MVCC EXAMPLE

Obja 2
Objb 2
txn2 r[b0,c3]w(d,e]

“/ | txn retQwl(a,c] |
Objd 2 ¢ 2

Obje 2

I txn4 r[c3]w(b,c,d] |

MVCC EXAMPLE

Obja 2

txn3 r[a0,b0lw(c]

txn2 r[b0,c3]wld,e]

| txn7 Tiborealwlac] |

I txn4 r[c3]w(b,c,d] |

Obje 2

TxXN LLIFECYCLE AND THE NETWORK

Server

Client

TxXN LLIFECYCLE AND THE NETWORK

Server

&
3
&)

Client

TxXN LLIFECYCLE AND THE NETWORK

Server

Client

TxXN LLIFECYCLE AND THE NETWORK

Server

Client

TxXN LLIFECYCLE AND THE NETWORK

Server

Client

TxXN LLIFECYCLE AND THE NETWORK

Server

Client

TxXN LLIFECYCLE AND THE NETWORK

Server

Client

TxXN LLIFECYCLE AND THE NETWORK

Server

Client

TxXN LLIFECYCLE AND THE NETWORK

Server

Client

TxXN LLIFECYCLE AND THE NETWORK

Server

Client

Consequently, SQL has lots of commands (which raises complexity),
in order to reduce number of round-trips.
Also stored-procedures.

TxXN LLIFECYCLE AND THE NETWORK

Assume client-side hot cache

Server

Client

TxXN LLIFECYCLE AND THE NETWORK

Assume client-side hot cache

Server

1. COMM/T

Client

TxXN LLIFECYCLE AND THE NETWORK

Assume client-side hot cache

Server

Client

TxXN LLIFECYCLE AND THE NETWORK

Assume client-side hot cache

Server

Client

Traditional database: the client asks “what is the value of x?”

TxXN LLIFECYCLE AND THE NETWORK

Assume client-side hot cache

Server

Client

Traditional database: the client asks “what is the value of x?”
GoshawkDB: the client asks “are these reads and writes consistent
with the current state of the data?”

TXN LIFECYCLE AND THE NETWORK

Assume client-side hot cache

Obja0
0
Obj b txn2 r[b0,c3]wld,e]
OMCO
[boansd|
Objd 2 J///z
| txn4 ric3wib,c,d] |

Obje 2

Traditional database: the client asks “what is the value of x?”
GoshawkDB: the client asks “are these reads and writes consistent
with the current state of the data?”

SHIP ALL THE OBJECTS TO THE CLIENT?

+ Client loads objects on demand by navigating from a root
object

SHIP ALL THE OBJECTS TO THE CLIENT?

+ Client loads objects on demand by navigating from a root
object

+ As usual, use data structures that allow efficient access to large
numbers of objects

SHIP ALL THE OBJECTS TO THE CLIENT?

+ Client loads objects on demand by navigating from a root
object

+ As usual, use data structures that allow efficient access to large
numbers of objects

* In programming languages, eg HashMap

SHIP ALL THE OBJECTS TO THE CLIENT?

Client loads objects on demand by navigating from a root
object

As usual, use data structures that allow efficient access to large
numbers of objects

In programming languages, eg HashMap
In databases, some sort of Index

:Customer
name
email
orders

SHOPPING

:Customer

name

email

orders
\

:Order

date
address
items

SHOPPING

:Customer

name

email

orders
\

:Order

date
address

items /

Item
description
price

SHOPPING

SHOPPING

:Customer IncompleteOrders
name

email
orders
\

:Order
date
address

items /

Item
description
price

CONCLUSIONS

Databases have a habit of going wrong once everything else is
on fire

The easier it is to understand the semantics of the database,
the less you'll be surprised by it

We don't always need tables, or query languages
GoshawkDB: distributed, fault tolerant, transactional, object
store

https://goshawkdb.io/

