
GDB:
P

P D O

Matthew Sackman
matthew@goshawkdb.io

https://goshawkdb.io/

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

• MySQL/MariaDB? (Spider / Galera)

• PostgreSQL?

• MongoDB?

• Cassandra?

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

• MySQL/MariaDB? (Spider / Galera)

• PostgreSQL?

• MongoDB?

• Cassandra?

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

• MySQL/MariaDB? (Spider / Galera)

• PostgreSQL?

• MongoDB?

• Cassandra?

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

• MySQL/MariaDB? (Spider / Galera)

• PostgreSQL?

• MongoDB?

• Cassandra?

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

• MySQL/MariaDB? (Spider / Galera)

• PostgreSQL?

• MongoDB?

• Cassandra?

Would you be confident in your answers if someone came and
asked you questions about the features and semantics of:

• MySQL/MariaDB? (Spider / Galera)

• PostgreSQL?

• MongoDB?

• Cassandra?

Part 1: Database Features and Semantics

D F

• Distributed

• Fault-tolerant

• Automatic sharding

• Transactional?

• Intuitive

• Fast enough

D F

• Distributed

• Fault-tolerant

• Automatic sharding

• Transactional?

• Intuitive

• Fast enough

D F

• Distributed

• Fault-tolerant

• Automatic sharding

• Transactional?

• Intuitive

• Fast enough

D F

• Distributed

• Fault-tolerant

• Automatic sharding

• Transactional?

• Intuitive

• Fast enough

D F

• Distributed

• Fault-tolerant

• Automatic sharding

• Transactional?

• Intuitive

• Fast enough

D F

• Distributed

• Fault-tolerant

• Automatic sharding

• Transactional?

• Intuitive

• Fast enough

MDB

• Distributed: Yes. Primary/Secondaries design; full multi-master
with Galera (InnoDB only).

• Fault-tolerant: Yes. Galera must be CP; continues working
provided a majority of nodes remain connected. Resyncing
will happen: expensive.

• Automatic sharding: Ish. Galera is everyone-has-everything
(no sharding). Spider storage engine does do sharding. Spider
can be used with Galera.

• Transactional: Yes, but with Galera, weak isolation levels only:
max repeatable read.

• Intuitive: Erm. It’s a bit complex!

MDB

• Distributed: Yes. Primary/Secondaries design; full multi-master
with Galera (InnoDB only).

• Fault-tolerant: Yes. Galera must be CP; continues working
provided a majority of nodes remain connected. Resyncing
will happen: expensive.

• Automatic sharding: Ish. Galera is everyone-has-everything
(no sharding). Spider storage engine does do sharding. Spider
can be used with Galera.

• Transactional: Yes, but with Galera, weak isolation levels only:
max repeatable read.

• Intuitive: Erm. It’s a bit complex!

MDB

• Distributed: Yes. Primary/Secondaries design; full multi-master
with Galera (InnoDB only).

• Fault-tolerant: Yes. Galera must be CP; continues working
provided a majority of nodes remain connected. Resyncing
will happen: expensive.

• Automatic sharding: Ish. Galera is everyone-has-everything
(no sharding). Spider storage engine does do sharding. Spider
can be used with Galera.

• Transactional: Yes, but with Galera, weak isolation levels only:
max repeatable read.

• Intuitive: Erm. It’s a bit complex!

MDB

• Distributed: Yes. Primary/Secondaries design; full multi-master
with Galera (InnoDB only).

• Fault-tolerant: Yes. Galera must be CP; continues working
provided a majority of nodes remain connected. Resyncing
will happen: expensive.

• Automatic sharding: Ish. Galera is everyone-has-everything
(no sharding). Spider storage engine does do sharding. Spider
can be used with Galera.

• Transactional: Yes, but with Galera, weak isolation levels only:
max repeatable read.

• Intuitive: Erm. It’s a bit complex!

MDB

• Distributed: Yes. Primary/Secondaries design; full multi-master
with Galera (InnoDB only).

• Fault-tolerant: Yes. Galera must be CP; continues working
provided a majority of nodes remain connected. Resyncing
will happen: expensive.

• Automatic sharding: Ish. Galera is everyone-has-everything
(no sharding). Spider storage engine does do sharding. Spider
can be used with Galera.

• Transactional: Yes, but with Galera, weak isolation levels only:
max repeatable read.

• Intuitive: Erm. It’s a bit complex!

MDB

• Distributed: Yes. Primary/Secondaries design; full multi-master
with Galera (InnoDB only).

• Fault-tolerant: Yes. Galera must be CP; continues working
provided a majority of nodes remain connected. Resyncing
will happen: expensive.

• Automatic sharding: Ish. Galera is everyone-has-everything
(no sharding). Spider storage engine does do sharding. Spider
can be used with Galera.

• Transactional: Yes, but with Galera, weak isolation levels only:
max repeatable read.

• Intuitive: Erm. It’s a bit complex!

MDB: G L

MDB: G L

MDB: G L

MDB: U S

MDB: U S

MDB: U S

S F O

• CP

• Isolation levels (repeatable read)

• How do we decide if we’re violating any of the restrictions?

S F O

• CP

• Isolation levels (repeatable read)

• How do we decide if we’re violating any of the restrictions?

S F O

• CP

• Isolation levels (repeatable read)

• How do we decide if we’re violating any of the restrictions?

MDB

• Distributed: Yes. It is a primary/secondaries design so you
must connect to the primary to write (and to read!).

• Fault-tolerant: Yes. It should survive node failure and recovery.
CP system: primary steps down once it loses contact with
majority of nodes.

• Automatic sharding: Yes, with several strategies available.
Sharding done at collection level.

• Transactional: No

• Intuitive: There are some operation issues and restrictions with
sharded collections - certain things that no longer work. Also
you need to learn write concerns and read concerns: probably
want to set those to majority to avoid stale reads.

MDB

• Distributed: Yes. It is a primary/secondaries design so you
must connect to the primary to write (and to read!).

• Fault-tolerant: Yes. It should survive node failure and recovery.
CP system: primary steps down once it loses contact with
majority of nodes.

• Automatic sharding: Yes, with several strategies available.
Sharding done at collection level.

• Transactional: No

• Intuitive: There are some operation issues and restrictions with
sharded collections - certain things that no longer work. Also
you need to learn write concerns and read concerns: probably
want to set those to majority to avoid stale reads.

MDB

• Distributed: Yes. It is a primary/secondaries design so you
must connect to the primary to write (and to read!).

• Fault-tolerant: Yes. It should survive node failure and recovery.
CP system: primary steps down once it loses contact with
majority of nodes.

• Automatic sharding: Yes, with several strategies available.
Sharding done at collection level.

• Transactional: No

• Intuitive: There are some operation issues and restrictions with
sharded collections - certain things that no longer work. Also
you need to learn write concerns and read concerns: probably
want to set those to majority to avoid stale reads.

MDB

• Distributed: Yes. It is a primary/secondaries design so you
must connect to the primary to write (and to read!).

• Fault-tolerant: Yes. It should survive node failure and recovery.
CP system: primary steps down once it loses contact with
majority of nodes.

• Automatic sharding: Yes, with several strategies available.
Sharding done at collection level.

• Transactional: No

• Intuitive: There are some operation issues and restrictions with
sharded collections - certain things that no longer work. Also
you need to learn write concerns and read concerns: probably
want to set those to majority to avoid stale reads.

MDB

• Distributed: Yes. It is a primary/secondaries design so you
must connect to the primary to write (and to read!).

• Fault-tolerant: Yes. It should survive node failure and recovery.
CP system: primary steps down once it loses contact with
majority of nodes.

• Automatic sharding: Yes, with several strategies available.
Sharding done at collection level.

• Transactional: No

• Intuitive: There are some operation issues and restrictions with
sharded collections - certain things that no longer work. Also
you need to learn write concerns and read concerns: probably
want to set those to majority to avoid stale reads.

MDB

• Distributed: Yes. It is a primary/secondaries design so you
must connect to the primary to write (and to read!).

• Fault-tolerant: Yes. It should survive node failure and recovery.
CP system: primary steps down once it loses contact with
majority of nodes.

• Automatic sharding: Yes, with several strategies available.
Sharding done at collection level.

• Transactional: No

• Intuitive: There are some operation issues and restrictions with
sharded collections - certain things that no longer work. Also
you need to learn write concerns and read concerns: probably
want to set those to majority to avoid stale reads.

MDB: S C R

MDB: S C R

MDB: S C R

MDB: S C R

MDB: S C R

MDB: S C R

MDB: S C R

MDB: S C R

MDB: S C R

S F O

• CP

• Isolation levels (repeatable read)

• How do we decide if we’re violating any of the restrictions?

• Write-concern, Read-concern, read-preference

S F O

• CP

• Isolation levels (repeatable read)

• How do we decide if we’re violating any of the restrictions?

• Write-concern, Read-concern, read-preference

C

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. Replication factor which is the 2F+1 value.
Hinted Handoff to store write hints if the write concern is lower
than the replication factor. It’s LWW with L defined by some
timestamp. . .

• Automatic sharding: Yes. Based on consistent-hash ring.

• Transactional: No. Supports light weight transactions which
only work on single objects. Question marks about current
implementation.

• Intuitive: AP with write consistency level ANY and RF=|nodes|
and read=ONE. CP with light weight transactions and use of
serial consistency, which achieves linearizable isolation, which
is consistent with serial of LWW. Internally uses Paxos, but has
to start at phase 1. Docs suggest 4 round trips. . . which seems
like 2 too many. Many things between AP and CP are possible
too.

C

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. Replication factor which is the 2F+1 value.
Hinted Handoff to store write hints if the write concern is lower
than the replication factor. It’s LWW with L defined by some
timestamp. . .

• Automatic sharding: Yes. Based on consistent-hash ring.

• Transactional: No. Supports light weight transactions which
only work on single objects. Question marks about current
implementation.

• Intuitive: AP with write consistency level ANY and RF=|nodes|
and read=ONE. CP with light weight transactions and use of
serial consistency, which achieves linearizable isolation, which
is consistent with serial of LWW. Internally uses Paxos, but has
to start at phase 1. Docs suggest 4 round trips. . . which seems
like 2 too many. Many things between AP and CP are possible
too.

C

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. Replication factor which is the 2F+1 value.
Hinted Handoff to store write hints if the write concern is lower
than the replication factor. It’s LWW with L defined by some
timestamp. . .

• Automatic sharding: Yes. Based on consistent-hash ring.

• Transactional: No. Supports light weight transactions which
only work on single objects. Question marks about current
implementation.

• Intuitive: AP with write consistency level ANY and RF=|nodes|
and read=ONE. CP with light weight transactions and use of
serial consistency, which achieves linearizable isolation, which
is consistent with serial of LWW. Internally uses Paxos, but has
to start at phase 1. Docs suggest 4 round trips. . . which seems
like 2 too many. Many things between AP and CP are possible
too.

C

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. Replication factor which is the 2F+1 value.
Hinted Handoff to store write hints if the write concern is lower
than the replication factor. It’s LWW with L defined by some
timestamp. . .

• Automatic sharding: Yes. Based on consistent-hash ring.

• Transactional: No. Supports light weight transactions which
only work on single objects. Question marks about current
implementation.

• Intuitive: AP with write consistency level ANY and RF=|nodes|
and read=ONE. CP with light weight transactions and use of
serial consistency, which achieves linearizable isolation, which
is consistent with serial of LWW. Internally uses Paxos, but has
to start at phase 1. Docs suggest 4 round trips. . . which seems
like 2 too many. Many things between AP and CP are possible
too.

C

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. Replication factor which is the 2F+1 value.
Hinted Handoff to store write hints if the write concern is lower
than the replication factor. It’s LWW with L defined by some
timestamp. . .

• Automatic sharding: Yes. Based on consistent-hash ring.

• Transactional: No. Supports light weight transactions which
only work on single objects. Question marks about current
implementation.

• Intuitive: AP with write consistency level ANY and RF=|nodes|
and read=ONE. CP with light weight transactions and use of
serial consistency, which achieves linearizable isolation, which
is consistent with serial of LWW. Internally uses Paxos, but has
to start at phase 1. Docs suggest 4 round trips. . . which seems
like 2 too many. Many things between AP and CP are possible
too.

C

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. Replication factor which is the 2F+1 value.
Hinted Handoff to store write hints if the write concern is lower
than the replication factor. It’s LWW with L defined by some
timestamp. . .

• Automatic sharding: Yes. Based on consistent-hash ring.

• Transactional: No. Supports light weight transactions which
only work on single objects. Question marks about current
implementation.

• Intuitive: AP with write consistency level ANY and RF=|nodes|
and read=ONE. CP with light weight transactions and use of
serial consistency, which achieves linearizable isolation, which
is consistent with serial of LWW. Internally uses Paxos, but has
to start at phase 1. Docs suggest 4 round trips. . . which seems
like 2 too many. Many things between AP and CP are possible
too.

S F O

• CP and AP: CAP “theorem”

• Isolation levels (repeatable read)

• How do we decide if we’re violating any of the restrictions?

• Write-concern, Read-concern, read-preference

• LWW

• Timestamps and Clocks

• Consistent-hash

• Paxos

S F O

• CP and AP: CAP “theorem”

• Isolation levels (repeatable read)

• How do we decide if we’re violating any of the restrictions?

• Write-concern, Read-concern, read-preference

• LWW

• Timestamps and Clocks

• Consistent-hash

• Paxos

I L

S I
 W

“Snapshot isolation is a guarantee that all reads made in a transaction
will see a consistent snapshot of the database and the transaction

itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot.”

Snapshot isolation is called “serializable” mode in Oracle.

S I
 W

“Snapshot isolation is a guarantee that all reads made in a transaction
will see a consistent snapshot of the database and the transaction

itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot.”

Snapshot isolation is called “serializable” mode in Oracle.

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S I

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}
• Serialized:

t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation: Write Skew
t1 || t2: x:1, y:1

S S S

Strong Serialized must obey causality. Serialized does not need to.

S

x := 0

 func t1() {
 if x == 0 {
 x = 1
 }
 }
 func t2() {
 if x == 1 {
 x = 2
 }
 }

• Client runs: t1; t2;
• Server is allowed to

reorder though:
t1; t2; or
t2; t1;

S

x := 0

 func t1() {
 if x == 0 {
 x = 1
 }
 }
 func t2() {
 if x == 1 {
 x = 2
 }
 }

• Client runs: t1; t2;
• Server is allowed to

reorder though:
t1; t2; or
t2; t1;

S

x := 0

 func t1() {
 if x == 0 {
 x = 1
 }
 }
 func t2() {
 if x == 1 {
 x = 2
 }
 }

• Client runs: t1; t2;
• Server is allowed to

reorder though:
t1; t2; or
t2; t1;

S I
 W

“Snapshot isolation is a guarantee that all reads made in a transaction
will see a consistent snapshot of the database and the transaction

itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot.”

As with serializable, no restriction on when in the history of the
database each snapshot is taken, so again can violate causality.

S I
 W

“Snapshot isolation is a guarantee that all reads made in a transaction
will see a consistent snapshot of the database and the transaction

itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot.”

As with serializable, no restriction on when in the history of the
database each snapshot is taken, so again can violate causality.

I L

I L

GDB

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. You specify the number of failures you wish
to withstand: F.

• Automatic sharding: Yes. Completely transparent.

• Transactional: Yes. Strong serializable only.

• Intuitive: Hopefully! Small API, small featureset, clear docs.

GDB

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. You specify the number of failures you wish
to withstand: F.

• Automatic sharding: Yes. Completely transparent.

• Transactional: Yes. Strong serializable only.

• Intuitive: Hopefully! Small API, small featureset, clear docs.

GDB

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. You specify the number of failures you wish
to withstand: F.

• Automatic sharding: Yes. Completely transparent.

• Transactional: Yes. Strong serializable only.

• Intuitive: Hopefully! Small API, small featureset, clear docs.

GDB

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. You specify the number of failures you wish
to withstand: F.

• Automatic sharding: Yes. Completely transparent.

• Transactional: Yes. Strong serializable only.

• Intuitive: Hopefully! Small API, small featureset, clear docs.

GDB

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. You specify the number of failures you wish
to withstand: F.

• Automatic sharding: Yes. Completely transparent.

• Transactional: Yes. Strong serializable only.

• Intuitive: Hopefully! Small API, small featureset, clear docs.

GDB

• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. You specify the number of failures you wish
to withstand: F.

• Automatic sharding: Yes. Completely transparent.

• Transactional: Yes. Strong serializable only.

• Intuitive: Hopefully! Small API, small featureset, clear docs.

P : C

• Understanding databases is hard: lots of terminology

• Comparing them is harder

• Very common that your requirements grow over time

• Hedge your bets: go with something that offers strong
guarantees and simple intuitive semantics. . .

• . . . assuming it’s fast enough. The stronger the guarantees, the
more work that has to be done.

• At scale, problems stop being rare.

P : C

• Understanding databases is hard: lots of terminology

• Comparing them is harder

• Very common that your requirements grow over time

• Hedge your bets: go with something that offers strong
guarantees and simple intuitive semantics. . .

• . . . assuming it’s fast enough. The stronger the guarantees, the
more work that has to be done.

• At scale, problems stop being rare.

P : C

• Understanding databases is hard: lots of terminology

• Comparing them is harder

• Very common that your requirements grow over time

• Hedge your bets: go with something that offers strong
guarantees and simple intuitive semantics. . .

• . . . assuming it’s fast enough. The stronger the guarantees, the
more work that has to be done.

• At scale, problems stop being rare.

P : C

• Understanding databases is hard: lots of terminology

• Comparing them is harder

• Very common that your requirements grow over time

• Hedge your bets: go with something that offers strong
guarantees and simple intuitive semantics. . .

• . . . assuming it’s fast enough. The stronger the guarantees, the
more work that has to be done.

• At scale, problems stop being rare.

P : C

• Understanding databases is hard: lots of terminology

• Comparing them is harder

• Very common that your requirements grow over time

• Hedge your bets: go with something that offers strong
guarantees and simple intuitive semantics. . .

• . . . assuming it’s fast enough. The stronger the guarantees, the
more work that has to be done.

• At scale, problems stop being rare.

P : C

• Understanding databases is hard: lots of terminology

• Comparing them is harder

• Very common that your requirements grow over time

• Hedge your bets: go with something that offers strong
guarantees and simple intuitive semantics. . .

• . . . assuming it’s fast enough. The stronger the guarantees, the
more work that has to be done.

• At scale, problems stop being rare.

Part 2: APIs

GDB O G

You deal with objects in your programming language. Why not
make them persistent?

GDB O G

You deal with objects in your programming language. Why not
make them persistent?

GDB O G

You deal with objects in your programming language. Why not
make them persistent?

GDB O G

You deal with objects in your programming language. Why not
make them persistent?

GDB O G

You deal with objects in your programming language. Why not
make them persistent?

GDB O G

You deal with objects in your programming language. Why not
make them persistent?

GDB O G

You deal with objects in your programming language. Why not
make them persistent?

GDB O G

You deal with objects in your programming language. Why not
make them persistent?

GDB O G

You deal with objects in your programming language. Why not
make them persistent?

A PW

Imagine infinite RAM and CPU, and no crashes.
How would we write programs and manage data?

It depends.

A PW

Imagine infinite RAM and CPU, and no crashes.
How would we write programs and manage data?

It depends.

O RM

• Tend to do one table per class/type. . .

• . . . which can create unnecessary contention.

• Always introduce tension as to who writes the SQL

• Often produce inefficient SQL

• Sometimes do weird and wacky things to your schema

• Introduce another layer of complexity; more code, more
dependencies

O RM

• Tend to do one table per class/type. . .

• . . . which can create unnecessary contention.

• Always introduce tension as to who writes the SQL

• Often produce inefficient SQL

• Sometimes do weird and wacky things to your schema

• Introduce another layer of complexity; more code, more
dependencies

O RM

• Tend to do one table per class/type. . .

• . . . which can create unnecessary contention.

• Always introduce tension as to who writes the SQL

• Often produce inefficient SQL

• Sometimes do weird and wacky things to your schema

• Introduce another layer of complexity; more code, more
dependencies

O RM

• Tend to do one table per class/type. . .

• . . . which can create unnecessary contention.

• Always introduce tension as to who writes the SQL

• Often produce inefficient SQL

• Sometimes do weird and wacky things to your schema

• Introduce another layer of complexity; more code, more
dependencies

O RM

• Tend to do one table per class/type. . .

• . . . which can create unnecessary contention.

• Always introduce tension as to who writes the SQL

• Often produce inefficient SQL

• Sometimes do weird and wacky things to your schema

• Introduce another layer of complexity; more code, more
dependencies

O RM

• Tend to do one table per class/type. . .

• . . . which can create unnecessary contention.

• Always introduce tension as to who writes the SQL

• Often produce inefficient SQL

• Sometimes do weird and wacky things to your schema

• Introduce another layer of complexity; more code, more
dependencies

O G MVCC

O G MVCC

O G MVCC

MVCC E

MVCC E

MVCC E

MVCC E

MVCC E

MVCC E

MVCC E

MVCC E

MVCC E

MVCC E

T L N

Consequently, SQL has lots of commands (which raises complexity),
in order to reduce number of round-trips.
Also stored-procedures.

T L N

Consequently, SQL has lots of commands (which raises complexity),
in order to reduce number of round-trips.
Also stored-procedures.

T L N

Consequently, SQL has lots of commands (which raises complexity),
in order to reduce number of round-trips.
Also stored-procedures.

T L N

Consequently, SQL has lots of commands (which raises complexity),
in order to reduce number of round-trips.
Also stored-procedures.

T L N

Consequently, SQL has lots of commands (which raises complexity),
in order to reduce number of round-trips.
Also stored-procedures.

T L N

Consequently, SQL has lots of commands (which raises complexity),
in order to reduce number of round-trips.
Also stored-procedures.

T L N

Consequently, SQL has lots of commands (which raises complexity),
in order to reduce number of round-trips.
Also stored-procedures.

T L N

Consequently, SQL has lots of commands (which raises complexity),
in order to reduce number of round-trips.
Also stored-procedures.

T L N

Consequently, SQL has lots of commands (which raises complexity),
in order to reduce number of round-trips.
Also stored-procedures.

T L N

Consequently, SQL has lots of commands (which raises complexity),
in order to reduce number of round-trips.
Also stored-procedures.

T L N

Assume client-side hot cache

Traditional database: the client asks “what is the value of x?”
GoshawkDB: the client asks “are these reads and writes consistent
with the current state of the data?”

T L N

Assume client-side hot cache

Traditional database: the client asks “what is the value of x?”
GoshawkDB: the client asks “are these reads and writes consistent
with the current state of the data?”

T L N

Assume client-side hot cache

Traditional database: the client asks “what is the value of x?”
GoshawkDB: the client asks “are these reads and writes consistent
with the current state of the data?”

T L N

Assume client-side hot cache

Traditional database: the client asks “what is the value of x?”
GoshawkDB: the client asks “are these reads and writes consistent
with the current state of the data?”

T L N

Assume client-side hot cache

Traditional database: the client asks “what is the value of x?”
GoshawkDB: the client asks “are these reads and writes consistent
with the current state of the data?”

T L N

Assume client-side hot cache

Traditional database: the client asks “what is the value of x?”
GoshawkDB: the client asks “are these reads and writes consistent
with the current state of the data?”

S O C?

• Client loads objects on demand by navigating from a root
object

• As usual, use data structures that allow efficient access to large
numbers of objects

• In programming languages, eg HashMap

• In databases, some sort of Index

S O C?

• Client loads objects on demand by navigating from a root
object

• As usual, use data structures that allow efficient access to large
numbers of objects

• In programming languages, eg HashMap

• In databases, some sort of Index

S O C?

• Client loads objects on demand by navigating from a root
object

• As usual, use data structures that allow efficient access to large
numbers of objects

• In programming languages, eg HashMap

• In databases, some sort of Index

S O C?

• Client loads objects on demand by navigating from a root
object

• As usual, use data structures that allow efficient access to large
numbers of objects

• In programming languages, eg HashMap

• In databases, some sort of Index

S

S

S

S

C

• Databases have a habit of going wrong once everything else is
on fire

• The easier it is to understand the semantics of the database,
the less you’ll be surprised by it

• We don’t always need tables, or query languages

• GoshawkDB: distributed, fault tolerant, transactional, object
store

https://goshawkdb.io/

