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• Distributed: Yes. Primary/Secondaries design; full multi-master
with Galera (InnoDB only).

• Fault-tolerant: Yes. Galera must be CP; continues working
provided a majority of nodes remain connected. Resyncing
will happen: expensive.

• Automatic sharding: Ish. Galera is everyone-has-everything
(no sharding). Spider storage engine does do sharding. Spider
can be used with Galera.

• Transactional: Yes, but with Galera, weak isolation levels only:
max repeatable read.
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• Distributed: Yes. Logically available from any node.

• Fault-tolerant: Yes. Replication factor which is the 2F+1 value.
Hinted Handoff to store write hints if the write concern is lower
than the replication factor. It’s LWW with L defined by some
timestamp. . .

• Automatic sharding: Yes. Based on consistent-hash ring.

• Transactional: No. Supports light weight transactions which
only work on single objects. Question marks about current
implementation.

• Intuitive: AP with write consistency level ANY and RF=|nodes|
and read=ONE. CP with light weight transactions and use of
serial consistency, which achieves linearizable isolation, which
is consistent with serial of LWW. Internally uses Paxos, but has
to start at phase 1. Docs suggest 4 round trips. . . which seems
like 2 too many. Many things between AP and CP are possible
too.
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• . . . assuming it’s fast enough. The stronger the guarantees, the
more work that has to be done.

• At scale, problems stop being rare.
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• Databases have a habit of going wrong once everything else is
on fire

• The easier it is to understand the semantics of the database,
the less you’ll be surprised by it

• We don’t always need tables, or query languages

• GoshawkDB: distributed, fault tolerant, transactional, object
store

https://goshawkdb.io/


